Optimization Algorithm for Systems Governed by Chaotic Dynamics

نویسندگان

  • Anthony Ashley
  • Jason E. Hicken
چکیده

We describe an algorithm for optimizing time-averaged objective functions that depend on a chaotic state variable. Such problems are ubiquitous in engineering design. They are challenging, because of the sensitive dependence of the state to perturbations in the design. One consequence of this sensitive dependence is that increasing the averaging period, which improves the accuracy of the objective, causes the gradient to diverge. To overcome this issue, the proposed algorithm uses an ensemble objective in a Newton-Krylov trust-region framework. The ensemble objective averages a set of objective functions, each of which uses a reduced time-averaging period and independent state variable; this independence permits each simulation and adjoint computation to be carried out in parallel. The novel aspect of the proposed method is the use of the ensemble objective within a Newton-Krylov algorithm; the latter helps avoid some of the issues presented by objectives governed by chaotic state variables. We demonstrate the proposed ensemble-Newton-Krylov algorithm on an optimization problem governed by the Lorenz dynamical system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

Chaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks

Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...

متن کامل

Parameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm

An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Bees algorithm (BA) is a new member of me...

متن کامل

A Clustering Approach by SSPCO Optimization Algorithm Based on Chaotic Initial Population

Assigning a set of objects to groups such that objects in one group or cluster are more similar to each other than the other clusters’ objects is the main task of clustering analysis. SSPCO optimization algorithm is anew optimization algorithm that is inspired by the behavior of a type of bird called see-see partridge. One of the things that smart algorithms are applied to solve is the problem ...

متن کامل

Robust Coordinated Design of UPFC Damping Controller and PSS Using Chaotic Optimization Algorithm

A Chaotic Optimization Algorithm (COA) based approach for the robust coordinated design of the UPFC power oscillation damping controller and the conventional power system stabilizer has been investigated in this paper. Chaotic Optimization Algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014